感染症•予防接種レター（第20号）

日本小児保健協会予防接種委員会では「感染症•予防接種」に関するレターを毎号の小児保健研究に揭載し， わかりやすい情報を会員にお伝えいたしたいと存じます。ご参考になれば幸いです。

日本小児保健協会予防接種委員会委員長 加藤達夫

予防接種委員会

感染症の流行と予防；基本再生産数 $\left(\mathrm{R}_{0}\right)$ ，
 集団免疫率（H）と予防接種率

人に感染する感染症は，感染様式から（1）麻疹や風疹 などのように人から人に感染する感染症，（2）日本脳炎 やマラリアなどのように動物から人に感染する感染症，（3）A型肝炎や破傷風などのように食物や環境から人に感染する感染症の 3 種類に分類される。人から人 に感染する感染症では， 1 人の人から周囲の人に感染 する数が多いほど，感染が拡大するスピードが速く，流行規模が大きくなる。多くの人が感染するとその感染症の流行は終息し，しばらく流行を認めなくなる。 しかし，その感染症に対する免疫を持たない人（感受性者）が蓄積すると，再度その感染症が流行する。予防接種が広く行われていなかった時代では，麻疹は 2年毎に，ムンプスは 4 年毎に，風疹は 5 年毎に流行が認められた。

1 人の感染者が周囲の感受性者に感染させる数が基本再生産数（basic reproduction number， R_{0} ）であり， この数が 1 より小さいとその感染症の流行は起らな い。多くの人が免疫を持たない状況下で流行した時の発症者数から求められた R_{0} を表 1 に示した ${ }^{122)}$ 。 R_{0} が高 $^{\text {相 }}$ いほど感染力が強くなる。最も感染力が強い感染症は

表1 主な感染症の基本再生産数（ R_{0} ）と集団免疫率（ H ）

感染症	${\text { Nokes DJ et al }{ }^{1)}}$			Fine PEM $^{2)}$	
	R_{0}	$\mathrm{H}(\%)$		R_{0}	$\mathrm{H}(\%)$
麻疹	$16 \sim 21$	$90 \sim 95$		$12 \sim 18$	$83 \sim 94$
ムンプス	$11 \sim 14$	$85 \sim 90$		$4 \sim 7$	$75 \sim 86$
風疹	$7 \sim 9$	$80 \sim 85$		$6 \sim 7$	$83 \sim 85$
百日晐	$16 \sim 21$	$90 \sim 95$		$12 \sim 17$	$92 \sim 94$
ジフテリア				$6 \sim 7$	85
ポリオ				$5 \sim 7$	$80 \sim 86$
天然痘				$5 \sim 7$	$80 \sim 85$
水痘			$8 \sim 10 ?$	$90 ?$	

R_{0} が $12 \sim 21$ である麻疹と百日咳である。地球上から根絶された天然痘のR0は $5 \sim 7$ と風疹なみの感染力であ り，2003年冬に騒がれた重症急性呼吸器症候群（SARS） の R_{0} は，風疹よりも低い 3 である。SARS流行時に話題となったスーパースプレッダーでも，そのR R_{0} は麻疹 や百日咳患者の R_{0} と同レベルである。

人から人に感染する感染症では，多くの人が免疫を持つとその感染症は流行しなくなる。したがって，そ の感染症を流行させないためには，免疫を持たない人 に人為的に免疫を提供し続ける必要がある。感染症を流行させないための免疫率が集団免疫率（herd im－ munity，H）であり，集団免疫率は $\left(1-1 / R_{0}\right) \times 100$ に近似する。麻疹の集団免疫率は $90 \sim 95 \%$ であり，この集団免疫率を維持するためには，1歳児の麻疹ワクチ ン接種率 90% 以上が必要と推測されている。
2002年と2003年に三重県下で麻疹が流行したが，そ の流行規模は地域により大きく異なっていた（図 $1)^{3}$ 。2年間の小児麻疹入院患者数が 1 人であった K医療センターが位置する地域の 1 歳半健診時の麻疹

$$
\begin{aligned}
& \mathrm{R}=0.9992(\mathrm{P}=0.0259) \\
& \mathrm{Y}=-1.027 \mathrm{X}+94.263 \text { (患者数 } 0 \text { の時の接種率 }=91.8 \%, \\
& \mathrm{P}=0.0231 \text {) }
\end{aligned}
$$

図1 小児麻疹入院患者数と麻疹ワクチン接種率

ワクチン接種率は90．5\％（2001年度），入院患者数が 9 人であったM病院が位置する地域の麻疹ワクチン接種率は $83.5 \%, 22$ 人が入院した Y 病院が位置する地域 の麻疹ワクチン接種率は 70.2% であった（三重県では 1 歳半健診時に予防接種率を調査している。なお，2001年度の三重県全体の 1 歳半健診受診率は 93% であっ た）。小児麻疹入院患者数と地域の麻疹ワクチン接種率との間には有意の負の相関があり（相関係数 $\mathrm{R}=$ $0.9992, \mathrm{P}=0.0259)$ ，回帰直線から小児麻疹入院患者数を0にするために必要な 1 歳半健診時の麻疹ワク チン接種率は 91.8% と推定された。この結果は，麻疹流行をコントロールするためには，1 歳半健診時の麻疹ワクチン接種率は 92% 以上が必要であることを示し ており，前述した推測「麻疹の集団免疫率 $90 \sim 95 \%$ を維持するためには 1 歳児の麻疹ワクチン接種率 90% 以上が必要」を支持する結果であった。

ワクチン予防可能疾患の流行をコントロールするた めに必要なのは，対象集団において早期に集団免疫率 を上回る予防接種率を達成することである。現在，累積予防接種率などを用いて，できるだけ正確に予防接種率をつかもうとしている。しかし，すべての子ども の予防接種記録をコンピュータ管理していないと，全数把握による予防接種率の算出は不可能である。また，健診で得られた予防接種率を用いるにあたり問題とな るのは，健診受診者の予防接種率よりも低率である健診未受診者の予防接種率が含まれていないことであ る。

コンピュータ管理により全数把握を行っている姫路市からの報告によると， 1 歳半健診未受診者の予防接種率は健診受診者予防接種率の約 80% である（表 $2)^{4}$ 。このデータを参考に1歳半健診時の予防接種率から健診未受診者を含めた地域の推定予防接種率を算出すると，推定予防接種率 $=1$ 歳半健診受診者予防接種率 $\times(0.8+0.2 \times 1$ 歳半健診受診率）となる（表 3 ）。 1 歳半健診受診率が 90% ならば，推定予防接種率 $=1$ 歳半健診受診者予防接種率 $\times 0.98$ である。この結果は， 1 歳半健診受診率が高ければ，健診受診者の予防接種率で地域の予防接種率を代用しても大きな違 いがないことを示している。

1 歳半健診は受診率が極めて高い健診であり，三重県でも各市町村の受診率は 90% 以上である。日本各地 の小児保健に関わる人達が行政と協力して，1 歳半健

表2 1歳6 か月健診対象者の予防接種率（姫路市）${ }^{4)}$

予防接種	受診者の接 種率 (a)	未受診者の 接種率（b）	接種比 $(\mathrm{b} / \mathrm{a})$
BCG	97.1	88.5	0.91
ポリオ 1 回	98.4	87.8	0.89
ポリオ 2 回	76.7	51.9	0.68
DPT 1 回	93.3	78.6	0.84
DPT 2 回	91.6	70.2	0.77
DPT 3 回	88.5	64.1	0.72
麻疹	76.3	59.5	0.78
平均 \pm SD			0.80 ± 0.09

対象者数 1,001 人，受診者数 870 人（受診率 $=86.9 \%$ ）

表3 健診未受診者を含めた推定予防接種率の算出式
－ 1 歳半健診受診率 P $\mathrm{P}=$ 受診者数 $(\mathrm{n}) \div$ 対象者数 $(\mathrm{m}) \times 100$

- 受診者の麻疹ワクチン接種率 A
- 未受診者の麻疹ワクチン接種率
$\mathrm{A} \times 0.8$（接種比）
－未受診者を含めた推定予防接種率 B

$$
\begin{aligned}
B & =\{n \times A+(m-n) \times 0.8 A\} \div m \times 100 \\
& =A(0.8+0.2 P)
\end{aligned}
$$

＊健診受診率が 90% ならば $\quad \mathrm{B}=0.98 \mathrm{~A}$（約 2% 低 い接種率）

診での予防接種率を把握し，この予防接種率が集団免疫率を上回るよう努力すれば，各地でのワクチン予防可能疾患の流行コントロールは可能となるであろう。
（文責：庵原俊昭）

文 献

1）Nokes DJ and Anderson RM ：Epidem．Inf． 1988 ； 101，1－20．
2）Fine PEM ：Epidemiological Review 1993；15， 265－302．
3）庵原俊昭，他：安全なワクチン確保とその接種方法に関する総合的研究，平成15年度研究報告． 2004，87－89．
4）岡藤輝夫，他：安全なワクチン確保とその接種方法に関する総合的研究，平成14年度研究報告． 2003，386－391．

